As per the Wikipedia
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item included in a collection so that the total weight is less than or equal to a given limit and the total amount is as large as possibleIn this article, I will show you the implementation of the Knapsack in C#.
using System;
public class Knapsack
{
static int nbObjects = 8;
static int[] weight = { 2, 3, 5, 2, 4, 6, 3, 1 };
static int[] utility = { 5, 8, 14, 6, 13, 17, 10, 4 };
static int weightmax = 12;
static int[,] array;
static void Display()
{
int i, u, w;
u = 0;
w = weightmax;
for (i = nbObjects - 1; i >= 1; i--)
{
if (array[i, w] != array[i - 1, w])
{
Console.Write((i + 1) + " ");
w = w - weight[i];
u = u + utility[i];
}
}
if (array[0, w] != 0)
{
Console.WriteLine("1");
w = w - weight[0];
u = u + utility[0];
}
}
public static void SolveDP()
{
array = new int[nbObjects, weightmax + 1];
// initialize the first row
for (int j = 0; j <= weightmax; j++)
if (j < weight[0])
{
array[0, j] = 0;
}
else
{
array[0, j] = utility[0];
}
// for all other rows
for (int i = 1; i < nbObjects; i++)
{
for (int j = 0; j <= weightmax; j++)
{
if (j - weight[i] < 0)
array[i, j] = array[i - 1, j];
else
array[i, j] = Math.Max(array[i - 1, j], array[i - 1, j - weight[i]] + utility[i]);
}
}
Display();
}
}